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Abstract
In this paper, we consider a four-parameter family of piecewise-linear ordinary
difference equations (O�Es) in R3. This system is obtained as a limit of
another family of three-dimensional integrable systems of O�Es. We prove
that the limiting procedure sends integrals of the original system to integrals
of the limiting system. We derive some results for the solutions such as
boundedness of solutions and the existence of periodic solutions. We describe
all topologically different shapes of the integral manifolds and present all
possible scenarios of transitions as we vary the natural parameters in the system,
i.e. the values of the integrals.

PACS numbers: 02.30.Ik, 02.30.Oz, 05.45.−a, 47.20.Ky

1. Introduction

Integrable dynamical systems have been the subject of investigation for considerable time.
The motion (or dynamics) in such systems is regular and ‘well behaved’ in contrast to chaotic
systems. Despite the fact that most dynamical systems found in applications are non-integrable,
insight from integrable systems is still very important. It provides us with a good starting point
for dealing with non-integrable systems by looking at them, for example, as perturbations of
integrable systems.

1.1. Piecewise-linear discrete systems and cellular automata

In [8], Tokihiro et al introduced a special transformation involving a limiting procedure with the
aim of describing a direct connection between cellular automata and integrable nonlinear wave
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equations. For their purpose, the parameters and the variables were assumed to be integers. A
generalization of this concept by looking at real-valued parameters and real-valued variables
is done e.g. in [4, 7]. This generalization leads to systems which are dynamically interesting
in their own right. It provides us with the possibility of studying the topological changes of
solutions since we can consider smooth changes in parameter space. However, the results for
the cellular automata case can be constructed from our results here.

1.2. Summary of the results

In this paper we consider a dynamical system in R3 of the form

u = v, v = w, w = uf (v,w), (1.1)

which is integrable in the following sense. The system possesses two functionally independent
integrals (real-valued functions in the state variables which are conserved under the mapping)
and an invariant measure. Inspired by the study in [4, 7], we apply the same transformation
involving a limiting procedure as in [8]. The first question we ask is whether the limiting
system is also integrable. In the appendices of this paper we prove that the transformation and
the limiting procedure send integrals of the original system to integrals of the limiting system.

As a case study, we consider a special rational function for f , namely

f (v,w) = α + βv + γw + δvw

α + βw + γ v + δvw
, (1.2)

where α, β, γ and δ are real numbers. For α = 0 = δ, this map reduces to the three-
dimensional MKdV mapping (see appendix A of [3]). For δ = 0 = γ , the map reduces to a
map that can be obtained from equation (37) of [5]. We have constructed the generalization
(1.2), in order to have more parameters at our disposal. After applying the transformation
and the limiting procedure, we have a piecewise-linear, volume-preserving, three-dimensional
dynamical system possessing two piecewise-linear integrals.

We prove that the intersection between the two integral manifolds is almost everywhere
transversal. This leads to the conclusion that the two integrals are functionally independent.
Thus, the transformation and the limiting procedure do not destroy the integrability. Moreover,
all solutions are bounded. Together with a special symmetry of the system, the boundedness
of solutions implies the existence of periodic solutions in the system. Furthermore, realizing
that the solution lives in a polygon-shaped intersection between the integral manifolds, we
prove that all solutions in a polygon containing a periodic solution are periodic with the same
period. As a consequence, we conclude that each integral manifold is fibred by polygons in
which either periodic or quasi-periodic motions take place. This suggests that a good way
for analysing the system in generality would be by fixing one of the integral manifolds and
restricting the dynamics to that manifold. The solutions then live on the invariant polygons
which are parametrized by the value of the other integral (which is still free).

For comparison, think of a planar nonlinear Hamiltonian flow which preserves all circles
(centred at the origin). The phase space (R2) is fibred by these circles on which either periodic
or quasi-periodic motions take place. The nontrivial invariant circles are diffeomorphic to each
other, while in our case, some of the invariant polygons are topologically different. Although
there is not much change in the dynamics, we consider this as a bifurcation of solutions.

There are two sources for these topological changes. The first is the non-smoothness of
the integral manifold. We present four types of topological changes that occur in our case
study in this paper. The second source is the fact that as we vary the value of the integral, the
topological shape of the integral manifold might change. For this, we have listed all possible
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scenarios for the shape of one of the integrals. Similar results can be derived for the second
integral.

2. Problem formulation

Consider R3 with coordinates (u, v,w). We consider a four-parameter family of discrete
dynamical systems which is defined by the mapping

u = v, v = w, w = u
α + βv + γw + δvw

α + βw + γ v + δvw
≡ F(u, v,w), (2.1)

where α, β, γ and δ are real numbers. This mapping has several properties.

(P1) For all parameter values, the mapping (2.1) possesses two integrals (functions which are
invariant under the mapping), i.e.

H1 = α(u + v + w) + β(uv + vw) + γ uw + δuvw, (2.2)

and

H2 = δ

(
1

u
+

1

v
+

1

w

)
+ β

(
1

vw
+

1

uv

)
+

γ

uw
+

α

uvw
. (2.3)

These integrals are functionally independent, i.e. the tangent planes of H1 and H2 are
transversal almost everywhere.

(P2) The mapping (2.1) is measure preserving (with a measure density function m(u, v,w) =
(uvw)−1), since

det


 0 1 0

0 0 1
∂F
∂u

∂F
∂v

∂F
∂w


 = α + βv + γw + δvw

α + βw + γ v + δvw
= w v u

wvu
,

which then, together with the two (functionally independent) integrals, implies that the
mapping (2.1) is integrable.

(P3) The system is invariant under the transformation (u, v,w) ↔ (w, v, u). This symmetry
is also known as time-reversal symmetry.

(P4) The system is invariant under the transformation in phase space: (u, v,w) �→
(1/u, 1/v, 1/w) together with the transformation in parameter space (α, β, γ, δ) �→
(δ, β, γ, α).

(P5) The system is invariant under the transformation in phase space: (u, v,w) �→
(λu, λv, λw) together with the transformation in parameter space (α, β, γ, δ) �→
(µλ3α,µλ2β,µλ2γ, µλδ).

2.1. Derivation of the piecewise-linear mapping

Let us now consider the transformations in the phase space

u �→ exp
(x

ε

)
, v �→ exp

(y

ε

)
, w �→ exp

(z

ε

)
, (2.4)

and also in the parameter space

α �→ exp
(a

ε

)
, β �→ exp

(
b

ε

)
, γ �→ exp

(c

ε

)
, and δ �→ exp

(
d

ε

)
. (2.5)

By using the identity

lim
ε→0

ε ln

(
exp

(
A

ε

)
+ exp

(
B

ε

))
= max(A,B),
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we obtain the limit of the transformed equation in (2.1):

x = y, y = z, z = x + g(y, z) (2.6)

where g(y, z) = max(a, b + y, c + z, d + y + z) − max(a, b + z, c + y, d + y + z). Similarly, in
the limit, the transformed integrals (2.2) and (2.3) become

I1 = max(a + x, a + y, a + z, b + x + y, b + y + z, c + x + z, d + x + y + z), (2.7)

and

I2 = max(d − x, d − y, d − z, b − y − z, b − x − y, c − x − z, a − x − y − z). (2.8)

The following are properties of the system (2.6). It is instructive to compare these with the
properties of the original system (2.1).

(P′
1) It can easily be checked that (2.7) and (2.8) are integrals of (2.6). In appendix A we

prove this for slightly more general systems (see theorem A.1). Although both H1 and
H2 are transformed into integrals of the transformed system (A.3) by theorem A.1, in
general they need not be functionally independent. In the following section we will
show that for our case, the two integrals mentioned above are functionally independent.

(P′
2) The system (2.6) is volume preserving. This can be proved by computing the determinant

of the Jacobian matrix of (2.6) but one needs to be careful to exclude the points where
the derivative is not defined. Moreover, the Jacobian of the mapping (2.6) at the point,
where it is well defined, is positive. This implies that the mapping (2.6) is orientation
preserving.

(P′
3) The system (2.6) also has time-reversal symmetry.

(P′
4) The system (2.6) is invariant under the transformation in phase space: (x, y, z) �→

(−x,−y,−z) together with the transformation in parameter space (a, b, c, d) �→
(d, b, c, a).

(P′
5) The system is invariant under the transformation in phase space: (x, y, z) �→ (x + λ,

y + λ, z + λ) together with the transformation in parameter space (a, b, c, d) �→
(a + 3λ + µ, b + 2λ + µ, c + 2λ + µ, d + λ + µ).

(P′
6) The system (2.6) is invariant under re scaling of the variables and the parameters by

ν > 0, i.e. x �→ νx, y �→ νy and z �→ νz, a �→ νa, b �→ νb, c �→ νc and d �→ νd. If
a, b, c and d are rational numbers, without loss of generality we can write them as

a = p1

q
, b = p2

q
, c = p3

q
, and d = p4

q
.

Choosing ν = 1
q

, we can transform the system into one with integer values parameter.
This is also true when the parameters a, b, c and d are in e.g. ηQ = {sη | s ∈ Q} where
η is an arbitrary but fixed irrational number.

3. General results of the system (2.6)

3.1. Proof that the integrals are functionally independent

If the integrals are functionally independent, by taking the intersection between the two-
level sets generically we will find a one-dimensional piecewise-linear manifold in R3 which
contains orbits. The two integral manifolds in our system consist of parallel plane segments.
This means, there might be some open domains in R3 where we have plane segments as the
intersection between the two-level sets. In those domains, the system (2.6) would have only
one integral (instead of two) which implies that integrability is in question. For our system we
prove that this is not the case.
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Lemma 3.1. The intersection between the integral manifolds is transversal almost everywhere.
Hence, the integrals are functionally independent.

Proof. The proof is done by inspection of all possible pairs of parallel plane segments
constructing the two integral manifolds. We will work out two cases in detail and the rest can
be done similarly.

Consider the plane d + x + y + z = I ◦
1 and the plane a − x − y − z = I ◦

2 which are
parallel to each other. Suppose that the plane segment which corresponds to d +x +y + z = I ◦

1
is present in the integral manifold I1 = I ◦

1 . Then, for every point (x◦, y◦, z◦) on that plane
segment we have

d + x◦ + y◦ + z◦ > max(a + x◦, a + y◦, a + z◦, b + x◦ + y◦, b + y◦ + z◦, c + x◦ + z◦),

provided (x◦, y◦, z◦) is not on the boundary of the plane segment. Since

d + x◦ + y◦ + z◦ > a + x◦,

it follows that

d − x◦ > a − x◦ − y◦ − z◦.

As a consequence, the point (x◦, y◦, z◦) is not on the plane segment: a − x − y − z = I ◦
2 for

all values of I ◦
2 .

Let us now consider the plane segment a + x = I ◦
1 and the plane segment d − x = I ◦

2 .
Similarly, let (x◦, y◦, z◦) be an arbitrary point satisfying a + x◦ = I ◦

1 which is not at the
boundary. Then

a + x◦ > max(a + y◦, a + z◦, b + x◦ + y◦, b + y◦ + z◦, c + x◦ + z◦, d + x◦ + y◦ + z◦).

From a + x◦ > d + x◦ + y◦ + z◦ we conclude that: a − x◦ − y◦ − z◦ > d − x◦. Thus the non-
transversal intersection could occur only at the boundaries of each plane segment. By this we
conclude that the intersection between I1 and I2 is transversal almost everywhere. �

Together with property (P ′
2), lemma 3.1 implies that the system (2.6) is integrable.

3.2. The inverse mapping

Note that the integrals I1 and I2 are invariant under the transformation x �→ z and z �→ x,
which is the time-reversal symmetry. Applying this symmetry to the system (2.6), we obtain
the mapping

x = z + g(y, x), y = x, z = y. (3.1)

It is easy to show that the above mapping is the inverse mapping of (2.6).

Lemma 3.2. The system (2.6) defines a one-to-one mapping in R3 with the inverse mapping
being (3.1).

3.3. One-parameter family of fixed points

Let us now look for fixed points of the system (2.6). It is clear that fixed points are
obtained by substituting x = y = z into system (2.6). It turns out that the entire line
{(x, y, z) = (s, s, s) | s ∈ R} consists of fixed points of the mapping (2.6) for all values of the
parameters.
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3.4. The existence of periodic solutions

Let us consider one of the level sets of I1, i.e. I1(x, y, z) = I ◦
1 for some real constant number

I ◦
1 . From (2.7) we can immediately conclude that x � I ◦

1 − a, y � I ◦
1 − a and z � I ◦

1 − a.
Let us now look at the other level set, namely I2(x, y, z) = I ◦

2 . We conclude similarly that
x � d − I ◦

2 , y � d − I ◦
2 and z � d − I ◦

2 .

Lemma 3.3. The intersection between the two manifolds I1(x, y, z) = I ◦
1 and I2(x, y, z) = I ◦

2
lies inside the closed domain defined by a Cartesian product of three closed intervals, i.e.
[d − I ◦

2 , I ◦
1 − a] × [d − I ◦

2 , I ◦
1 − a] × [d − I ◦

2 , I ◦
1 − a].

A consequence of lemma 3.3 for the dynamics of system (2.6) is interesting to note. Let us
restrict ourselves for a moment to looking at integer values of the parameters. If we choose
an initial condition (x1, y1, z1) ∈ Z3, then for all natural numbers n, the solution of (2.6)
corresponding to that initial condition satisfies (xn, yn, zn) ∈ Z3. It should also lie on the
intersection between the manifold I1 = I1(x1, y1, z1) and I2 = I2(x1, y1, z1), say I. Since I
lies inside the bounded box described in the above lemma, then I ∩ Z3 is a finite set of points.

Now let us consider the initial condition(
p11

q
,
p21

q
,
p31

q

)
∈ Q3.

The system (2.6) can be written as

x = y, y = z

z = 1

q
max(aq + qx, bq + qy + qx, cq + qz + qx, dq + qy + qz + qx)

− 1

q
max(aq, bq + qz, cq + qy, dq + qy + qz).

Thus, for all natural numbers n, the solution takes the form(
p1n

q
,
p2n

q
,
p3n

q

)
∈ Q3.

We conclude that the following holds.

Theorem 3.4. If a, b, c and d are integers, a solution of (2.6) which starts at a rational point
(x1, y1, z1) ∈ Q3, is periodic.

The above theorem provides us with the existence of periodic solutions in the system (2.6) if
a, b, c and d are integers. In the view of property (P ′

6), this existence of periodic solutions
actually holds for a larger set of parameter values. Furthermore, there are actually uncountably
many periodic solutions in the system (2.6). We will prove this in section 4.

4. Periodic and quasi-periodic solutions

Let us now fix a value for one of the integrals, say I1. The level set I1 = C1 is a two-
dimensional piecewise-linear surface in R3. We want to study the dynamics of the system
(2.6) on the level set I1 = C1.

Lemma 4.1. The dynamical system (2.6) restricted to the level set I1 = I ◦
1 is measure

preserving.
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The idea of the proof for this lemma follows from the proof of theorem 1(ii) on p 2316
of [6]. The adaptation is done to include the situation where differentiability is only almost
everywhere.

Proof. Let us write the mapping (2.6) as ξ = �(ξ). Since (2.6) is volume preserving, then∫
U

dξ =
∫

�(U)

dξ,

for all U ⊂ R3. Let us take a volume element V which has arbitrary projection on the integral
manifold I1 = I ◦

1 . Since the integral manifold is piecewise linear, then V = ∪j∈J Vj while
the projection of Vj is called Aj . Let αj = (α1, α2)j be the coordinates in Aj while tj is the
coordinate orthogonal to Aj . Then∫

V

dξ =
∑
j∈J

∫
Vj

∂ξ

∂(αj , tj )
dαj dtj ,

where J = {1, 2, . . . , n}. Note that the derivatives are now well defined on each Vj . We do
the same for �(V ), and then taking all the dtj → 0, we have∑

j∈J

∫
Aj

∂ξ

∂(αj , tj )

∣∣∣∣
tj =0

dαj =
∑
j∈J ′

∫
Aj

∂ξ

∂(αj , tj )

∣∣∣∣
tj =0

dαj ,

which completes the proof. �

For arbitrary values of the second integral I2 (greater than a certain bound which will be
determined later), the intersection between the two-level sets gives us a polygon-like shape on
the piecewise-linear surface defined by I1 = I ◦

1 . We have the following theorem.

Theorem 4.2. Let P be the intersection between I1 = I ◦
1 and I2 = I ◦

2 . We assume that P
contains a T-periodic solution with T ∈ N, i.e.

{ξn = (xn, yn, zn) | n = 0, 1, . . . , T − 1}.
Then, every point in P is a T-periodic point of the mapping (2.6).

Proof. Let us define ϕT : R3 → R3 which is the Tth iterate of the mapping (2.6). Then
ξn, n = 0, 1, . . . , T − 1, are fixed points of the mapping ϕT . Let us assume that the part of
polygon P which connects ξ0 and ξ1 consists of two line-segments L1 and L2. Let us call the
point where the two segments join ξ 1

2
. Then L1 can be written as

ξ = ξ0 + 2t
(
ξ 1

2
− ξ0

)
, t ∈ [

0, 1
2

)
, (4.1)

while L2 can be written as

ξ = ξ 1
2

+ 2
(
t − 1

2

)(
ξ1 − ξ 1

2

)
, t ∈ [

1
2 , 1

]
. (4.2)

The two relations in (4.1) and (4.2) define a mapping φ : [0, 1] → L1 ∪ L2. Moreover, the
mapping is one to one and thus, invertible. By doing this, we have associated the mapping
ϕT : R3 → R3 with a mapping φ−1 ◦ ϕT ◦ φ : [0, 1] → [0, 1], which is also, one to one and
piecewise linear. The construction of φ is naturally extended to the case where the part of P
connecting ξ0 and ξ1 consists of a larger but finite number of line segments.

Note that, for t ∈ (0, 1) either φ−1 ◦ ϕT ◦ φ(t) − t � 0 or φ−1 ◦ ϕT ◦ φ(t) − t � 0.
In the first case, if φ−1 ◦ ϕT ◦ φ(t) − t > 0 for all t, then t = 1 is an asymptotically
stable (attracting) fixed point. This is a violation of the measure preserving nature of the
mapping (2.6). Thus we have (φ−1 ◦ ϕT ◦ φ)(t) = t for all t ∈ (0, 1). The second case can be
treated similarly. �
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The following corollaries can be proven using similar methods with the proof of theorem (4.2).

Corollary 4.3. Every solution on the polygon P containing a non-periodic point is quasi-
periodic. The polygon P is densely filled by the orbit of any of those solutions.

Corollary 4.4. The integral manifold I1 = I ◦
1 is fibred by polygons (which are parametrized

by the value of the second integral I2 = I ◦
2 ) on which either periodic or quasi-periodic motions

take place.

5. The integral manifolds

In general, both of the integral manifolds consist of at least three and at most seven plane
segments. The number of plane segments in each integral manifold is obviously dependent on
the value of the parameters. In an integrable system, such as ours, it is natural to use the value
of the integrals as parameters in the system. In this paper, we will restrict the dynamics to
one-level set of I1, namely I1 = I ◦

1 . The results would be the same if one would have chosen
to fix I2 instead.

There are eight possibilities for the shape of the integral manifold I1 = I ◦
1 . For

convenience, we name the planes constructing the integral manifold in the following definition.

Definition 5.1. The plane segments in the integral manifold corresponding to x + y + b = I ◦
1

and y + z +b = I ◦
1 are called the B-planes. The plane segment corresponding to c +x + z = I ◦

1
is the C-plane. The plane segment corresponding to d + x + y + z = I ◦

1 is the D-plane, and
the plane segments corresponding to x + a = I ◦

1 , y + a = I ◦
1 and z + a = I ◦

1 are called the
A-planes.

In figure 1, we have drawn all possible shapes of the integral manifolds I1 = I ◦
1 . Depending

on the parameters, we may have different scenarios of shape changes as we vary the value
of I1.

Lemma 5.2. Consider the integral manifold I1 = I ◦
1 .

(1) The plane segment corresponding to c + x + z = I ◦
1 does not appear in the integral

manifold I1 = I ◦
1 if and only if 2a − c � I ◦

1 .
(2) The plane segments corresponding to b + x + y = I ◦

1 and to b + y + z = I ◦
1 do not appear

in the integral manifold I1 = I ◦
1 if and only if 2a − b � I ◦

1 .
(3) The plane segment corresponding to d + x + y + z = I ◦

1 does not appear in the integral
manifold I1 = I ◦

1 if and only if 2b + c − 2d � I ◦
1 or 1

2 (3a − d) � I ◦
1 .

Proof. (1) From (2.7) it follows that x + a � I ◦
1 . Then

x + z + c � z + I ◦
1 − a + c

� z + a + (I ◦
1 − 2a + c).

Thus, if (2a − c) � I ◦
1 the plane segment corresponding to c + x + z = I ◦

1 does not appear in
the integral manifold I1 = I ◦

1 . Consider the situation where (2a − c) < I ◦
1 which implies that

I ◦
1 = (2a − c) + q2 (for some q). Consider the following set of inequalities:

x + a � (2a − c) + q2 (5.1)

y + a � (2a − c) + q2 (5.2)

z + a � (2a − c) + q2 (5.3)
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A

TP

B

TP

TP

C

TP

D

BP

TP

TP

BC BD

CD BCD

Figure 1. In this figure we have drawn all possible shape of the integral manifold I1 = I ◦
1 . From

the left to right, top to bottom, we have the situation where we have all seven planes, no B-planes,
no C-plane, no D-plane, no B- and C-planes, no B- and D-planes, no C- and D-planes and no B-,
C- and D-planes. See definition 5.1 for definition of the planes.

x + y + b � (2a − c) + q2 (5.4)

y + z + b � (2a − c) + q2 (5.5)

x + z + c � (2a − c) + q2 (5.6)

x + y + z + d � (2a − c) + q2. (5.7)

We will show that there exists a solution (x◦, y◦, z◦) of the system above, which satisfies
x◦ + z◦ + c = (2a − c) + q2 or, equivalently, z◦ = 2 (a − c) + q2 − x◦. From inequality (5.3)
we have (a − c) � x◦. Together with inequality (5.1), we have

(a − c) � x◦ � (a − c) + q2.
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Finally, we choose

y◦ � min(c − d + q2, a − b + q2, a − c + q2),

which concludes the proof of (1).
(2) This is proved by a similar technique to (1).
(3) Let us now consider the three planes: x + z = I ◦

1 − c, y + z = I ◦
1 − b and x + y = I ◦

1 − b.
The three planes intersect each other at the point

(x◦, y◦, z◦) = (
1
2 (I ◦

1 − c), 1
2 (I ◦

1 + c − 2b), 1
2 (I ◦

1 − c)
)
.

Thus, by requiring that x◦ + y◦ + z◦ + d − I ◦
1 � 0, we conclude that x + y + z + d �

max(x + z + c, y + z + b, x + y + b) if 2b + c − 2d � I ◦
1 . Let us also consider the planes

x = I ◦
1 − a, y = I ◦

1 − a and z = I ◦
1 − a. The intersection between the three planes is

(I ◦
1 − a, I ◦

1 − a, I ◦
1 − a). Similar to the previous analysis, we conclude that x + y + z + d �

max(x + a, y + a, z + a) if 1
2 (3a − d) � I ◦

1 . �

For the other integral manifold, i.e. I2 = I ◦
2 , similar results as in lemma 5.2 can be derived.

The proof is omitted since it is identical to the proof of lemma 5.2.

Lemma 5.3. Consider the integral manifold I2 = I ◦
2 .

(1) The plane segment corresponding to c − x − z = I ◦
2 does not appear in the integral

manifold I2 = I ◦
2 if and only if 2d − c � I ◦

2 .
(2) The plane segments corresponding to b−x −y = I ◦

2 and to b−y −z = I ◦
2 do not appear

in the integral manifold I2 = I ◦
2 if and only if 2d − b � I ◦

2 .
(3) The plane segment corresponding to a − x − y − z = I ◦

2 does not appear in the integral
manifold I2 = I ◦

2 if and only if 2b + c − 2a � I ◦
2 or 1

2 (3d − a) � I ◦
2 .

From lemma 5.2 we know that there are four numbers on the real line: θ1 = 2a − c, θ2 =
2a − b, θ3 = 2b + c − 2d and θ4 = 1

2 (3a − d) which are important in the shape changes of the
integral manifold I1 = I ◦

1 . Note that

θ1 + 2θ2 + θ3

4
= θ4,

which implies that we can only choose three out of the four θ arbitrarily. Moreover, from the
above relation one can see that θ4 is located at the mid-point of the average between θ1 and θ3,
i.e. θ1+θ3

2 and θ2.

5.1. Topological change of the integral manifold I1 = I ◦
1

In table 1, we have presented all possible scenarios for the topological changes in the integral
manifold I1 = I ◦

1 . In general, for large enough value of I ◦
1 the integral manifold contains all

seven plane segments. In figure 1 this situation is drawn as shape A. For small enough value
of I1 = I ◦

1 , the integral manifold contains three plane segments corresponding to shape BCD
in figure 1.

Let us consider, as an example, the first row on table 1. On the third column, we have
put the sequence of shapes of the integral manifold I1 = I ◦

1 . For a large value of I ◦
1 namely

I ◦
1 > θ3, as mentioned earlier, we have all seven planes present in the integral manifold. This

corresponds to shape A in figure 1. As we decrease the value of I ◦
1 so that θ1 < I ◦

1 < θ3,
we move to the situation where the D-plane disappears. If θ4 < I ◦

1 < θ1, then the C-plane
disappears. Thus, we have the CD shape as is drawn in figure 1. No topological change occurs
as we pass the value of θ4. Finally, as we pass the value of θ2 the B-plane disappears.
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Table 1. In this table we have presented all possible scenarios for shape transitions as we vary the
value of I1. Although the arrow is pointing to the right, actually it is easier to read in the other
direction. Take for example the row number one. We start with a value of I ◦

1 > θ3. Passing θ3, the
integral manifold I1 = I ◦

1 changes from having shape A to shape D (see figure 1 for the shapes).
Then, crossing θ1, the shape changes from shape D to shape CD, and so forth.

No. Assumption Condition Sequence of shapes

1 θ1 < θ3 θ2 < θ4 < θ1 < θ3 BCD → CD → CD → D → A
2 θ2 < θ4 = θ1 < θ3 BCD → CD → D → A
3 θ2 < θ1 < θ4 < θ3 BCD → CD → D → D → A
4 θ1 < θ2 < θ4 < θ3 BCD → BD → D → D → A
5 θ1 < θ2 = θ4 < θ3 BCD → BD → D → A
6 θ1 < θ4 < θ2 < θ3 BCD → BD → BD → D → A
7 θ1 < θ4 < θ2 = θ3 BCD → BD → BD → A
8 θ1 < θ4 < θ3 < θ2 BCD → BD → BD → B → A
9 θ1 < θ4 = θ3 < θ2 BCD → BD → B → A

10 θ1 < θ3 < θ4 < θ2 BCD → BD → BD → B → A

11 θ1 > θ3 θ2 < θ4 < θ3 < θ1 BCD → CD → CD → C → A
12 θ2 < θ4 = θ3 < θ1 BCD → CD → C → A
13 θ2 < θ3 < θ4 < θ1 BCD → CD → CD → C → A
14 θ2 = θ3 < θ4 < θ1 BCD → CD → C → A
15 θ3 < θ2 < θ4 < θ1 BCD → CD → CD → C → A
16 θ3 < θ2 = θ4 < θ1 BCD → BCD → C → A
17 θ3 < θ4 < θ2 < θ1 BCD → BCD → BC → C → A
18 θ3 < θ4 < θ1 < θ2 BCD → BCD → BC → B → A
19 θ3 < θ4 = θ1 < θ2 BCD → BCD → B → A
20 θ3 < θ1 < θ4 < θ2 BCD → BCD → BD → B → A

21 θ1 = θ3 θ2 < θ4 < θ1 BCD → CD → CD → A
22 θ1 < θ4 < θ2 BCD → BD → B → A

Let us write θ5 = 2d − c, θ6 = 2d − b, θ7 = 2b + c − 2a and θ8 = 1
2 (3d − a). Here we

also find a relation which is similar to the relation between θ1, θ2, θ3 and θ4, i.e.

θ5 + 2θ6 + θ7

4
= θ8.

Moreover, we find that

θj+1 − θ1 = θj+5 − θ5, j = 1, 2, 3.

Remark 5.4. Using the fact that the relative distance between the bifurcation points are the
same, we could define a shift on the integrals by

Ĩ 1 = I1 − 2a, and Ĩ 2 = I2 − 2d,

which implies that

θ1 = −c = θ5, θ2 = −b = θ6, θ3 = 2b + c − 2a − 2d = θ7,

and

θ4 = − 1
2 (a + d) = θ8.

This would quantitatively simplify the analysis.
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Fold line

Branching point
Transition point

Fold point

Figure 2. In this figure, we have drawn possible bifurcations scenarios due to the non-smoothness
of the integral manifold I1 = I ◦

1 . The branching point is that where the polygon gets an extra side
as it passes the point. The transition point is the situation where the polygon changes side. The
fold point is losing two sides due to the fact that the integral manifold is folded. The fold line is
similar to the fold point.

6. Topological changes of the polygons

In this section we will describe the topological changes of the polygons containing the solutions
of (2.6). There are two sources for these topological changes:

(S1) the non-smoothness of the integral manifold I1 = I ◦
1 , and

(S2) the fact that plane segments can disappear from the integral manifold I2 = I ◦
2 as we vary

the value of I ◦
2 .

After fixing the integral manifold I1 = I ◦
1 , we will be in one of the situations drawn in

figure 1. There are at least four possibilities of topological changes of the polygons, i.e. the
branching point, the transition point, the fold point and the fold line. If three plane segments
in the integral manifold intersect at a point, we call that point the branching point. In the
neighbourhood of the branching point, the polygon gets an extra side (or loses one side). The
second situation is when two plane segments intersect at a line on the integral manifold, and
the line happens to be parallel to one of the edges of the polygon. In this situation the polygon
does not get an extra side.

The others are the situations where two plane segments intersect at a line L on the integral
manifold. Moreover, there exist two intersection points p1 and p2 between the polygon and L.
As we vary the value of the other integral, the polygon moves towards L. As a consequence,
|p1 − p2| might go to zero or to a finite nonzero number. In the case the distance goes to zero
we call it fold point while the other is fold line. We illustrate these two situation in figure 2.

A different topological change of the polygon is due to the topological changes in the
integral manifold as we vary the value of the integral. For instance, using lemma 5.2, we
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Figure 3. In this figure we have plotted the two-parameter ‘bifurcation’ diagram. On the horizontal
axis is the value of the integral I1 while in the vertical is I2. The red lines are I1 = 14 and I2 = 10.
The green lines are I1 = 11 and I2 = 7, while the blue lines are I1 = 9, I1 = 0, I2 = 5 and
I2 = −4. The thickened line is the lower bound for the value of I2. This is obtained by computing
the value of I2 at the fixed point. In this figure we have drawn some points using red diamonds
and blue diamonds. The red diamonds represent the initial values taken in figure 4 while the blue
diamonds are for figure 5.

can distinguish several possible transitions of the shape of I1, which are presented in table 1.
Similar results can be derived for the other integral manifold by using lemma 5.3.

We would like to note that although the topological shape of the integral manifold I2 = I ◦
2

changes as we vary the value of I ◦
2 , the topological shape of the polygon may not be affected.

In the following section, we will describe an example where this happens.
We proceed with the bifurcation analysis of system (2.6) as follows. First, we fix the

values of the parameters a, b, c and d. For that chosen combination, we look at the first
column of table 1 to determine in which situation we are. Then, we fix a value for I1 namely
I1 = I ◦

1 , and by this we fix a shape for it. In that integral manifold, we are looking for
possible branching points, transition points, fold points or fold lines. This is done by looking
for intersection between plane segments in the integral manifold.

Next, we will choose initial conditions such that they all lie on the integral manifold
I1 = I ◦

1 . We will also keep track of the value of I2 on each of the initial conditions and
compare it with the similar table as in table 1, but derived from lemma 5.3.

7. An example

In this section we have taken the parameters to be a = 8, b = 5, c = 2 and d = 6. For this
choice of the parameters’ values, θ1 = 14, θ2 = 11, θ3 = 0, θ4 = 9, θ5 = 10, θ6 = 7, θ7 = −4
and θ8 = 5. Thus θ3 < θ4 < θ2 < θ1, which is the 18th row in table 1.

In figure 3 we have drawn the lines: I1 = θj and I2 = θj+4, j = 1, 2, 3, 4. Recall that
these lines are the lines where the integral manifolds I1 = I ◦

1 and I2 = I ◦
2 undergo topological

changes. The red lines are I1 = θ1 and I2 = θ5. Going from right to left with I ◦
1 , the plane

segment which corresponds to c + x + z = I ◦
1 disappears from the integral manifold as we

pass I1 = θ1. Similarly by going down with I ◦
2 , the plane segment which corresponds to

c − x − z = I ◦
2 disappears from I2 = I ◦

2 as we pass I2 = θ5. The green lines are I1 = θ2
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Figure 4. In this figure we draw the situation where I ◦
1 = 20 > θ1 = 14. The integral manifold

I1 = I ◦
1 has seven plane segments. For several initial conditions we draw the orbits of (2.6). These

orbits correspond to the red diamonds in figure 3. The outermost one corresponds to the highest red
diamond in figure 3. The red polygon represents a polygon which is close to the critical polygon.
This corresponds to the horizontal red line in figure 3. Similarly, the green polygon corresponds
to the green line in figure 3.

and I2 = θ6, and they correspond to the vanishing of the plane segments corresponding to
b + x + y = I ◦

1 , b + y + z = I ◦
1 , b − x − y = I ◦

2 and b − y − z = I ◦
2 . The blue lines are for

vanishing of the plane segments corresponding to d + x + y + z = I ◦
1 and a − x − y − z = I ◦

2 .
It is clear that as we fix the value of I1, by decreasing the value of I2, the polygon

containing the solutions gets smaller. At a certain value, the polygon collapses into the fixed
point. This defines an equation relating I1 with I2. The graph of this equation is drawn in
figure 3 using the thickened line. Below this line, we have no solution for the system (2.6).

7.1. The case where I ◦
1 = 20

Let us now look at figure 4 in where we have drawn the integral manifold I ◦
1 = 20. One

can easily see that at this value, I ◦
1 > θ1, which implies that the integral manifold consists

of seven plane segments. On this integral manifold we have chosen six initial conditions and
drawn the orbits on the same plot. Note that these initial conditions are chosen such that
they are all lying on the integral manifold I ◦

1 = 20. This is done for example by choosing
arbitrary x and y and solve for z the equation I ◦

1 = 20. Moreover, due to theorem 4.2,
x and y have to be chosen so that they lie on a non-periodic polygon. These initial conditions
can also be represented by the value of the second integral, i.e. from the outermost one:
I ◦

2 = 21.31 . . . , 15.02 . . . , 10.30 . . . , 8.73 . . . and 7.10 . . . .

As we approach the red line I ◦
2 = θ5 = 10 in figure 3, the part of the polygon on the

plane y = constant which is coloured yellow, is getting smaller. Recall that in figure 3, the
line I ◦

2 = θ5 represents the vanishing of the plane segment c − x − z = I ◦
2 . The orbit for

I ◦
2 = 10.30 . . . is drawn using the red colour. This orbit is on a polygon which is close to a

critical polygon where the integral manifold of I2 loses its C-plane. As a consequence, the
yellow part of the polygon vanishes.
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Another topological change occurs as I2 approaches θ6 = 7. This time, the line coloured
black on the z = const plane, and the line coloured khaki on the x = const plane vanish.
The critical polygon is coloured green. Recall that θ6 corresponds to the vanishing of the two
B-planes from the integral manifold of I2.

The red polygon is also the critical polygon in which we have a transition point (see
section 2 for a definition). One can see that the orbit outside the red polygon has one side
which is coloured orange. After passing the red polygon, the side changes colour to white.
The length of that white side is larger than the orange side. Another transition point occurs at
the critical polygon which is coloured green.

7.1.1. Period-three dynamics. Let Pg be the domain on the manifold I1 = 20 which is
bounded by the green polygon. Let us take an arbitrary initial condition in Pg . Then the
solution (xn, yn, zn) of the system (2.6) is in Pg for all n. Recall that

I1 = max(a + x, a + y, a + z, b + x + y, b + y + z, c + x + z, d + x + y + z),

and

I2 = max(d − x, d − y, d − z, b − y − z, b − x − y, c − x − z, a − x − y − z).

The geometry of Pg implies that

max(a + x, a + y, a + z, d + x + y + z) = I1. (7.1)

Moreover, since I2 < θ6 = 2d − b, then the integral manifold I2 has lost its B-planes and
C-plane. It implies that

max(d − x, d − y, d − z, a − x − y − z) = I2 < 2d − b. (7.2)

Note that (7.2) implies that x > b − d, y > b − d and z > b − d.
Let us now pay attention to the function g(y, z) = max(a, b + y, c + z, d + y + z) −

max(a, b + z, c + y, d + y + z). Suppose that there exists a point (x◦, y◦, z◦) ∈ Pg such that
b + y◦ � max(a, c + z◦, d + y◦ + z◦). Then b + y◦ � d + y◦ + z◦ which is a contradiction. It
means that b + y < max(a, b + y, c + z, d + y + z) for all point in Pg .

Note that 2d − c = θ5 > θ6 = 2d − b which is equivalent to c < b. Suppose that
there exists a point (x◦, y◦, z◦) ∈ Pg such that c + z◦ � max(a, b + y◦, d + y◦ + z◦). Then
c + z◦ � d + y◦ + z◦, which implies c − d � y◦. But b − d > c − d � y◦ which is a
contradiction.

By using similar methods, we can show that b + z and c + y cannot be the maximum of
{a, b + z, c + y, d + y + z}. This implies that for all (x, y, z) ∈ Pg, g(y, z) = 0. Thus, every
point in Pg is a period-three point. This is also true for I1 � 11 = θ2 (the left side of the
vertical green line in figure 3).

7.2. The case where I1 = 13

Let us pay attention to the y = const plane. Recall that for I1 = 20 we have the phenomenon
of a vanishing side in this plane. This phenomenon occurs as the polygon passes through the
red polygon in figure 4. The side which vanishes is coloured yellow.

In figure 5, the corresponding side is coloured gold. The colour is different since it
corresponds to a different intersection between plane segments of the integral manifolds. The
one which is coloured yellow in figure 4 is the intersection between the y = const plane of
I1 with the C-plane of I2. That is why that side vanishes as I2 passes θ5. The side which is
coloured gold in figure 5 is the intersection between the y = const plane of I1 with the A-plane
of I2. That is why we do not see this side vanishing as I2 passes θ5.
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Figure 5. In this figure we draw the situation where I ◦
1 = 13. The integral manifold I1 = I ◦

1 has
already lost its C-plane segments. For several initial conditions we draw the orbits of (2.6). These
orbits correspond to the blue diamonds in figure 3. The outermost one corresponds to the highest
blue diamond in figure 3. The green polygon corresponds to the green line in figure 3.

Passing through I2 = 9.04 . . . , the polygon goes thourgh a branching point where the
polygon gets an extra side. At the green coloured critical polygon, there is also the transition
point behaviour. Just as in the previous case, every point inside the green polygon is a
period-three point.

8. Concluding remarks

We have described the dynamics of the three-dimensional piecewise-linear integrable mapping
(2.6). Each level set of I1 is fibred by invariant polygons which are the intersections between
the level sets of I1 and I2 for various initial conditions. On each polygon, the motion is either
periodic or quasi-periodic.
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Appendix A. General settings

Consider R3 with coordinates (u, v,w). We define a dynamical system on R3 by considering
a mapping given by

u = v, v = w, w = uf (v,w), (A.1)
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where f : R2 → R. We assume that there exists a function H : R3 → R such that

H(u, v,w) = H(u, v,w).

Such a function is called an integral of the system (A.1).
Let us now transform the variables by

u = exp
(x

ε

)
, v = exp

(y

ε

)
, w = exp

(z

ε

)
, (A.2)

with a view to taking the limit ε → 0 later on. We need to transform also the parameters
involved in the system but at the moment we are not concerned about this. The transformations
(A.2) were first introduced by Tokihiro et al [8]. For the purpose of the transformation, we
assume that all of our variables and parameters are positive. We remark that recently, the work
of Ochiai [1] provides us with the opportunity to treat systems which involve subtraction.

Applying the transformation to (A.1) and then taking the limit of ε goes to zero, leads to

x = y, y = z, z = x + g(y, z), (A.3)

where

g(y, z) = lim
ε→0

ε ln
(
f

(
exp

(y

ε

)
, exp

(z

ε

)))
,

provided the limit exists.
Let us now define the function K : R3 → R, by

K(x, y, z) = lim
ε→0

ε ln
(
H

(
exp

(x

ε

)
, exp

(y

ε

)
, exp

(z

ε

)))
, (A.4)

assuming the limit exists. We have the following theorem.

Theorem A.1. The function (A.4) is an integral of the system (A.3).

Proof. Using the transformation, we let

u = exp
(x

ε

)
, v = exp

(y

ε

)
, w = exp

(z

ε

)
,

u = exp

(
x

ε

)
, v = exp

(
y

ε

)
, and w = exp

(
z

ε

)
.

Consider w = uf (v,w), or equivalently

w = exp
(x

ε

)
f

(
exp

(y

ε

)
, exp

(z

ε

))

= exp

(
x + ε ln f

(
exp

(
y

ε

)
, exp

(
z
ε

) )
ε

)
.

By definition we have (assuming the limit exists):

K(x, y, z) = lim
ε→0

ε ln
(
H

(
exp

(x

ε

)
, exp

(y

ε

)
, exp

(z

ε

)))
= lim

ε→0
ε ln (H (u, v,w))

= lim
ε→0

ε ln (H (u, v,w)) since H is an integral of (A.1)

= lim
ε→0

ε ln

(
H

(
v,w, exp

(
x + ε ln f

(
exp

(
y

ε

)
, exp

(
z
ε

))
ε

)))
.

We have assumed the existence of the following limit:

lim
ε→0

ε ln f
(

exp
(y

ε

)
, exp

(z

ε

))
= g(y, z).
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This implies that

K(x, y, z) = lim
ε→0

ε ln

(
H

(
exp

(y

ε

)
, exp

(z

ε

)
, exp

(
x + g(y, z)

ε

)))
,

= K(x, y, z),

which completes the proof. �

Appendix B. Remark on the volume preservation property

Consider a general mapping:

u = v, v = w, w = F(u, v,w),

where there exists a measure density function m(u, v,w) such that
∂F

∂u
= m(u, v,w)

m(u, v,w)
.

After the transformation, we have the transformed system

x = y, y = z, z = G(x, y, z),

where

G(x, y, z) = lim
ε→0

ε ln F
(

exp
(x

ε

)
, exp

(y

ε

)
, exp

(z

ε

))
,

provided the limit exists. Then
∂

∂x
G(x, y, z) = lim

ε→0
ε

∂

∂x

(
ln F

(
exp

(x

ε

)
, exp

(y

ε

)
, exp

( z

ε

)))
= lim

ε→0

1

F
(
exp

(
x
ε

)
, exp

(
y

ε

)
, exp

(
z
ε

)) ∂F

∂u
exp

(x

ε

)

= lim
ε→0

m
(
exp

(
x
ε

)
, exp

(
y

ε

)
, exp

(
z
ε

))
m

(
exp

(
x
ε

)
, exp

(
y

ε

)
, exp

(
z
ε

)) exp
(

x+y+z

ε

)
exp

(
x+y+z

ε

) .

This means that the measure density function of the transformed system is

M(x, y, z) = lim
ε→0

m
(

exp
(x

ε

)
, exp

(y

ε

)
, exp

(z

ε

))
exp

(x + y + z

ε

)
,

provided the limit exists. Note that if we have a uniform measure m(u, v,w) = 1, the last
limit does not exists.
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